Norm-Preserving Extension of Convex Lipschitz Functions

S. Cobzaș and C. Mustàṭa
Institutul de Matematică Cluj-Napoca, Romania
Communicated by R. Bojanic

Received March 15, 1977

Let (X, d) be a metric space. A function $f: X \rightarrow R$ is called Lipschitz if there exists a number $M \geqslant 0$ such that

$$
\begin{equation*}
f(x)-f(y) \mid \leqslant M d(x, y) \tag{1}
\end{equation*}
$$

for all $x, y \in X$. The smallest constant M verifying (1) is called the norm of f and is denoted by $\| f f_{x}$.

We have

$$
\begin{equation*}
\left.f\right|_{x}=\sup \{|f(x)-f(y)| / d(x, y): x, y \in X, x \neq y\} \tag{2}
\end{equation*}
$$

Denote by Lip X the linear space of all Lipschitz functions on X. Actually, $\|\cdot\|_{x}$ is not a norm on the space Lip X, since $\mid f \|_{X}=0$ if f is constant.

Now let Y be a nonvoid subset of X. A norm-preserving extension of a function $f \in \operatorname{Lip} Y$ to X is a function $F \in \operatorname{Lip} X$ such that $\left.F\right|_{X}=f$ and $\|f\|_{Y}=\|F\|_{X}$. By a result of Banach [1] (see also Czipser and Geher [2]) every $f \in \operatorname{Lip} Y$ has a norm-preserving extension F in Lip X. Two of these extensions are given by

$$
\begin{equation*}
F_{1}(x)=\sup \left\{f(y)-f \|_{Y} d(x, y): y \in Y\right\} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{2}(x)=\inf \left\{f(y)+\left.f\right|_{Y} d(x, y): y \in Y\right\} . \tag{4}
\end{equation*}
$$

Every norm-preserving extension F of f satisfies

$$
\begin{equation*}
F_{1}(x) \leqslant F(x) \leqslant F_{2}(x) \tag{5}
\end{equation*}
$$

for all $x \in X$ (see [7]).
Now, let X be a normed linear space and let Y be a nonvoid convex subset of X. Concerning the convex norm-preserving extension to X of the convex functions in Lip Y, we can prove the following theorem:

Theorem 1. If X is a normed linear space and Y a nonvoid convex subset of X, then every convex function f in Lip Y has a convex norm preserving extension F in $\operatorname{Lip} X$.

Proof. We show that the maximal norm-preserving extension (4) of f is also convex. Let $F(x)=\inf \left\{f(y)+\|f\|_{Y}\|x-y\|: y \in Y\right\}, x_{1}, x_{2} \in X, y_{1}$, $y_{2} \in Y$, and $\alpha \in[0,1]$. Then

$$
\begin{aligned}
& F\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \\
& \quad \leqslant f\left(\alpha y_{1}+(1-\alpha) y_{2}\right)+\|f\|_{Y}\left\|\alpha x_{1}+(1-\alpha) x_{2}-\alpha y_{1}-(1-\alpha) y_{2}\right\| \\
& \quad \leqslant \alpha f\left(y_{1}\right)+(1-\alpha) f\left(y_{2}\right)+\|f\|_{Y}\left(\alpha\left\|x_{1}-y_{1}\right\|+(1-\alpha) x_{2}-y_{2} \|\right) \\
& \quad=\alpha\left(f\left(y_{1}\right)+\|f\|_{Y}\left\|x_{1}-y_{1}\right\|\right)+(1-\alpha)\left(f\left(y_{2}\right)+\|f\|_{Y}\left\|x_{2}-y_{2}\right\|\right)
\end{aligned}
$$

Taking the infimum with respect to $y_{1}, y_{2} \in Y$, we obtain

$$
F\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \leqslant \alpha F\left(x_{1}\right)+(1-\alpha) F\left(x_{2}\right)
$$

which shows that the function F is convex.
In general, this extension is not unique. Indeed, let $X=R$, with the usual absolute value norm, $Y=[-1,1]$, and $f: Y \rightarrow R$ be given by $f(x)=-x$ for $x \in[-1,0]$ and $f(x)=2 x$ for $x \in] 0,1]$. Then the maximal normpreserving extension (4) of f is given by $F(x)=-2 x$ for $x \in]-\infty,-1[$, $F(x)=-2 x$ for $x \in[-1,0[$, and $F(x)=2 x$ for $x \in[0,+\infty[$. But the function $G(x)=-x$ for $x \in]-\infty, 0[$ and $G(x)=2 x$ for $x \in[0,+\infty[$ is also a convex norm-preserving extension of f, and so is every convex combination $\alpha F+$ $(1-\alpha) G, \alpha \in[0,1]$, of the functions F and G.

Let, as above, X be a normed linear space and Z a convex subset of X such that $0 \in Z$. Denote by $\operatorname{Lip}_{0} Z$ the space

$$
\begin{equation*}
\operatorname{Lip}_{0} Z=\{f \in \operatorname{Lip} Z: f(0)=0\} \tag{6}
\end{equation*}
$$

Then (2) is a norm on $\operatorname{Lip}_{0} Z$ and $\operatorname{Lip}_{0} Z$ is a Banach space with respect to this norm.

We use also the following notations:

$$
\begin{equation*}
K_{Z}=\left\{f \in \operatorname{Lip}_{0} Z: f \text { is convex on } Z\right\} \tag{7}
\end{equation*}
$$

-the convex cone of convex functions in $\operatorname{Lip}_{0} Z$;

$$
\begin{equation*}
X_{e}=K_{X}-K_{X}, \tag{8}
\end{equation*}
$$

-the linear space generated by the cone K_{X};

$$
\begin{equation*}
Z_{c}^{\perp}=\left\{f \in X_{c}:\left.f\right|_{Z}=0\right\} \tag{9}
\end{equation*}
$$

-the null space of the set Z in X_{c}.

If E is a normed linear space, M a nonvoid subset of E and $x \in E$, we denote by $d(x, M)$ the distance from x to M, i.e.,

$$
d(x, M)=\inf \{!x \cdots: y \in M\}
$$

and by P_{M} the metric projection of X onto M, i.e.,

$$
P_{M}(x)=\{y \in M: x-y:=d(x, M)\}
$$

If K is a subset of X, then the set M is called K-proximinal (K-Chebyshevian) if $P_{M}(x) \neq \varnothing\left(\right.$ respectively $\left.\operatorname{card}\left(P_{M}(x)\right)=1\right)$, for all $x \in K$.

In the sequel X denotes a normed linear space and Y a convex subset of X such that $0 \in Y$. It follows that K_{Y} is a P-cone in the sense of [10], and as a particular case of the results proved there, one obtains:

Theorem 2. (a) If $f \in K_{X}$ then

$$
\left.\left.f\right|_{Y}\right|_{Y}=d\left(f, Y_{c}{ }^{\perp}\right) .
$$

(b) The space $Y_{c}{ }^{\perp}$ is K_{X}-proximinal. For $f \in K_{X}$, the function g is in $P_{Y_{e}}(f)$ if and only if $g=f-F$, where F is a convex norm-preserving extension of $\left.f\right|_{Y}$.
(c) The space $Y_{c} \perp$ is K_{X}-Chebyshevian if and only if every $f \in K_{Y}$ has a unique convex norm-preserving extension to X.

Remark. Similar duality results appear in [4, 11] for linear functionals and in [6-10] for Lipschitz functions.

Now, we want to show that an inequality similar to (5) holds also for the convex norm-preserving extensions of a given convex Lipschitz function. For $f \in K_{Y}$ let us denote by $E_{Y}{ }^{c}(f)$ the set of all convex norm preserving extensions of f. We denote the norm $\left.\cdot\right|_{x}$ by $\|\cdot\|$.

Theorem 3. If $f \in K_{Y}$ then there exist two functions F_{1}, F_{2} in $E_{Y}{ }^{c}(f)$ such that

$$
\begin{equation*}
F_{1}(x) \leqslant F(x) \leqslant F_{2}(x) \tag{10}
\end{equation*}
$$

for all $x \in X$ and $F \in E_{Y}{ }^{c}(f)$.
For the proof we need the following lemma:

Lemma 4. The set $E_{Y}{ }^{c}(f)$ is downward directed (with respect to the pointwise ordering).

Proof of Lemma 4. We have to show that for $G_{1}, G_{2} \in E_{Y}{ }^{c}(f)$ there exists $G \in E_{Y}{ }^{c}(f)$ such that

$$
\begin{equation*}
G(x) \leqslant \min \left(G_{1}(x), G_{2}(x)\right), \tag{11}
\end{equation*}
$$

for all $x \in X$.
If E is a linear space and $\varphi: E \rightarrow R \cup\{ \pm \infty\}$ is a function, then the strict epigraph of φ is defined by

$$
\operatorname{epi}^{\prime} \varphi=\{(x, a) \in E \times R: \varphi(x)<a\}
$$

The function φ is convex if and only if its strict epigraph is a convex subset of $E \times R$ (see Laurent [5, Theorem 6.1.5, Remark 6.1.6]).

For $G_{1}, G_{2} \in E_{Y}{ }^{c}(f)$ put

$$
\begin{equation*}
\Gamma=\operatorname{co}\left(\text { epi' }^{\prime} G_{1} \cup \text { epi' }^{\prime} G_{2}\right) \tag{12}
\end{equation*}
$$

where $\operatorname{co}(A)$ denotes the convex hull of the set A.
Define $G: X \rightarrow R \cup\{ \pm \infty\}$ by

$$
\begin{equation*}
G(x)=\inf \{a \in R:(x, a) \in \Gamma\}, \quad x \in X \tag{13}
\end{equation*}
$$

We show that $G \in E_{Y}{ }^{c}(f)$ and that G verifies the inequality (11). The proof is divided into several steps.
(i) The set Γ is open. Since the functions G_{1} and G_{2} are continuous, the sets epi' G_{1} and epi' G_{2} are open, and so is their convex hull Γ.
(ii) If $(z, c) \in \Gamma$ and $d \geqslant c$ then $(z, d) \in \Gamma$. Let $z=\alpha x+(1-\alpha) y$, $c=\alpha a+(1-\alpha) b$, for $\alpha \in[0,1],(x, a) \in \operatorname{epi}^{\prime} G_{1},(y, b) \in \operatorname{epi}^{\prime} G_{2}$ and let $\epsilon>0$ be an arbitrary number. Then $(x, a+\epsilon) \in$ epi $^{\prime} G_{1}$ and $(y, b+\epsilon) \in$ epi' G_{2}, so that $(z, c+\epsilon)=\alpha(x, a+\epsilon)+(1-\alpha)(y, b+\epsilon) \in \Gamma$.
(iii) epi' $G=\Gamma$ and G is a convex function. Let $(x, a) \in$ epi' G, i.e., $G(x)<a$. By (13) there exists $b \in R$ such that $(x, b) \in \Gamma$ and $b<a$. By (ii), $(x, a) \in \Gamma$, proving the inclusion epi' $G \subset \Gamma$.

Conversely, let $(x, a) \in \Gamma$. By (i) Γ is open, so that there exist a neighborhood U of x and $\epsilon>0$ such that $U \times] a-\epsilon, a+\epsilon[\subset \Gamma$. Therefore $\{x\} \times] a-\epsilon, a+\epsilon[\subset \Gamma$ and, by (13), $G(x) \leqslant a-\epsilon<a$, which shows that $(x, a) \in \mathrm{epi}^{\prime} G$ and $\Gamma \subset$ epi' G.

The convexity of G follows from the above quoted result in Laurent [5].
(iv) We have $G(x) \leqslant \min \left(G_{1}(x), G_{2}(x)\right)$ for all $x \in X$ and $G(z)=$ $G_{1}(z)=G_{2}(z)$ for all $z \in Y$. Let $x \in X$. Then for all $a>G_{1}(x)$ and $b>G_{2}(x)$ we have $(x, a) \in \mathrm{epi}^{\prime} G_{1} \subset \Gamma$ and $(y, b) \in \mathrm{epi}^{\prime} G_{2} \subset \Gamma$, so that, by (13), $G(x) \leqslant$ $\min \left(G_{1}(x), G_{2}(x)\right)$.

Let z be in Y and c in R such that $(z, c) \in \Gamma$. Then $(z, c)=a(x, a)$ $(1-\alpha)(y, b)$, for a number $\alpha \in[0,1],(x, a) \in$ epi' $^{\prime} G_{1}$, and $(y, b) \in$ epi' $^{\prime} G_{2}$. But, by the convexity of G_{1} and $G_{2}, G_{i}(z)=G_{i}(\alpha x+(1-\alpha) y) \leqslant \alpha G_{i}(x)$ $-+(1-\alpha) G_{i}(y)<\alpha a+(1-\alpha) b=c$, for $i=-1$, 2. Taking the infimum with respect to all $c \in R$ such that $(z, c) \in \Gamma$ we obtain $G(z) \geqslant G_{1}(z)=$ $G_{2}(z)$. Since the converse inequality holds for all $x \in X$, it follows $G(z)$ $G_{1}(z)=G_{2}(z)$, for all $z \in Y$.
(v) $-\infty<G(x)<+\infty$ for all $x \in X$. The relations $\left(x, G_{1}(x)-1\right) \in$ epi' $G_{1} \subset \Gamma$ and (13) imply $G(x) \leqslant G_{1}(x)+1<\infty$. Suppose there exists $x \in X$ such that $G(x)=-\infty$. Choose an element $y \in Y$ and put $z=2 y-x$. Then, by (iv) and the convexity of G we get

$$
G_{1}(y)=G(y) \leqslant 2^{-1}(F(x)+F(z))=-\infty
$$

implying $G_{1}(y)=-\infty$, which is impossible.
(vi) Equality of the norms: $\|G\|=\left\|\left.f\right|_{Y}=\right\| G_{1}\|=\| G_{2} \|$. Since $\left.G\right|_{Y}=\left.G_{1}\right|_{Y}=f$, it follows $\|G\| \geqslant \| G_{1} \mid$. Suppose $\|G\|>G_{1} \|$. By the definition (2) of the norm in $\operatorname{Lip} X$, there exist $x, y \in X, x \neq y$ such that $G(x)-G(y)\|/\| x-y\|>\| G_{1} \|$, say

$$
|G(x)-G(y)| /\|x-y\|=\left\|G_{1}\right\|+\epsilon,
$$

for an $\epsilon>0$. Without loss of generality we can suppose

$$
\begin{equation*}
\frac{G(y)-G(x)}{\|x-y\|}=\left\|G_{1}\right\|+\epsilon \tag{14}
\end{equation*}
$$

Let $\overrightarrow{x y}=\{x+t(y-x): t \geqslant 0\}$ be the half-line determined by x and y. Define $\varphi:] 0, \infty\left[\rightarrow R\right.$ by $\varphi(t)=t^{-1}(G(x+t(y-x))-G(x))$. By Holmes [3, p. 17], the function φ is nondecreasing, so that

$$
\begin{aligned}
\frac{G(x+t(y-x))-G(x)}{\|t(y-x)\|} & =\frac{1}{\|y-x\|} \cdot \varphi(t) \geqslant \frac{1}{\|y-x\|} \cdot \varphi(1) \\
& =\frac{G(y)-G(x)}{\|y-x\|}=\left\|G_{1}\right\|+\epsilon \\
& \geqslant \frac{G_{1}(x+t(y-x))-G_{1}(x)}{\|t(y-x)\|}+\epsilon,
\end{aligned}
$$

for all $t \geqslant 1$.
Therefore

$$
G_{1}(x+t(y-x)) \leqslant G(x+t(y-x))-\left(G(x)-G_{1}(x)+t \epsilon\|y-x\|\right)
$$

for all $t \geqslant 1$. But for t sufficiently large, $G(x)-G_{1}(x)+t \epsilon\|y-x\|>0$, so
that $G_{1}(x+t(y-x))<G(x+t(y-x))$, contradicting the inequality $G \leqslant G_{1}$ (iv).

Lemma 4 is completely proved.
Proof of Theorem 3. Let F_{2} be the maximal norm-preserving extension (4) of f. By the proof of Theorem $1, F_{2}$ is convex and since $F_{2}(x) \geqslant F(x)$ for every norm-preserving extension F of f, this is a fortiori true for the convex norm-preserving extensions of f.

Put

$$
\begin{equation*}
F_{1}(x)=\inf \left\{F(x): F \in E_{Y}^{c}(f)\right\} \tag{15}
\end{equation*}
$$

To end the proof we have to show that F_{1} is a convex norm-preserving extension of f.
(i) F_{1} is a convex function. Let $x, y \in X, \alpha \in[0,1], \epsilon>0$ and let G_{1}, $G_{2} \in E_{Y}{ }^{c}(f)$ be such that $G_{1}(x)<F_{1}(x)+\epsilon$ and $G_{2}(y)<F_{1}(y)+\epsilon$. Since, by Lemma 4, the set $E_{Y}{ }^{c}(f)$ is downward directed, there exists $G_{3} \in E_{Y}{ }^{c}(f)$ such that $G_{3} \leqslant G_{1}$ and $G_{3} \leqslant G_{2}$. Then

$$
\begin{aligned}
& F_{1}(\alpha x+(1-\alpha) y) \\
& \quad \leqslant G_{3}(\alpha x+(1-\alpha) y) \leqslant \alpha G_{3}(x)+(1-\alpha) G_{3}(y) \\
& \quad \leqslant \alpha G_{1}(x)+(1-\alpha) G_{2}(y)<\alpha F_{1}(x)+(1-\alpha) F_{2}(y)+\epsilon
\end{aligned}
$$

Since $\epsilon>0$ is arbitrary, it follows that

$$
F_{1}(\alpha x+(1-\alpha) y) \leqslant \alpha F_{1}(x)+(1-\alpha) F_{2}(y),
$$

i.e., the function F_{1} is convex.
(ii) $\left.F_{1}\right|_{Y}=f$. This is obvious since $F(y)=f(y)$ for all $y \in Y$ and $F \in E_{Y}{ }^{c}(f)$.
(iii) Equality of the norms: $\left\|F_{1}\right\|=\|f\|_{Y}$. Obviously, $\mid F_{1}\|\geqslant\| f \|_{Y}$. Let us suppose $\left\|F_{1}\right\|>\|f\|_{Y}$. Then there exists $\delta>0$ such that $\left\|F_{1}\right\|=$ $\|f\|_{Y}+\delta$. By the definition of the norm in $\operatorname{Lip} X$, there exist $x, y \in X, x \neq y$ such that

$$
\begin{equation*}
\left(F_{1}(y)-F_{1}(x)\right) /\|y-x\| \geqslant\|f\|_{Y}+\epsilon \tag{16}
\end{equation*}
$$

where $0<\epsilon<\delta$. By definition (15) of F_{1}, for $0<\eta<\epsilon\|x-y\|$, there exist $G_{1}, G_{2} \in E_{Y}{ }^{c}(f)$ such that $G_{1}(x)<F_{1}(x)+\eta$ and $G_{2}(y)<F_{1}(y)+\eta$. The set $E_{Y}{ }^{c}(f)$ being downward directed (Lemma 4), there exists $G_{3} \in E_{Y}{ }^{c}(f)$ such that $G_{3} \leqslant G_{1}$ and $G_{3} \leqslant G_{2}$. Consequently

$$
F_{1}(x) \leqslant G_{3}(x)<F_{1}(x)+\eta
$$

and

$$
F_{1}(y) \leqslant G_{3}(y)<F_{1}(y)+\eta
$$

or, equivalently,

$$
0 \leqslant G_{3}(x)-F_{1}(x)<\eta,
$$

and

$$
0 \leqslant G_{3}(y)-F_{1}(y)<\eta .
$$

From these inequalities one obtains

$$
G_{3}(x)-F_{1}(x)-\left(G_{3}(y)-F_{1}(y)\right) \leqslant G_{3}(x)-F_{1}(x)<\eta,
$$

so that

$$
\begin{equation*}
G_{3}(y)-G_{3}(x)>F_{1}(y)-F_{1}(x)-\eta . \tag{17}
\end{equation*}
$$

Taking into account (16) and (17)

$$
\begin{aligned}
\frac{G_{3}(y)-G_{3}(x)}{\|y-x\|} & >\frac{F_{1}(y)-F_{1}(x)}{\|y-x\|}-\frac{\eta}{\|y-x\|} \\
& >\|f\|_{Y}+\epsilon-\frac{\eta}{y-x}>\|f\|_{Y} .
\end{aligned}
$$

But then $\left\|G_{3}\right\|>\|f\|_{Y}$, in contradiction to $G_{3} \in E_{Y}{ }^{c}(f)$.
Theorem 3 is proved.
Remark. Let $X=R$ and $Y=[a, b], 0 \in Y$. For $f \in K_{Y}$, let

$$
m_{\mathbf{1}}=\min \left(\left|f^{\prime}(a+0)\right|,\left|f^{\prime}(b-0)\right|\right)
$$

and

$$
m_{2}=\max \left(\left|f^{\prime}(a+0)\right|,\left|f^{\prime}(b-0)\right|\right)
$$

Then the minimal and maximal convex norm-preserving extensions F_{1} and F_{2}, respectively, of f, are given by

$$
\begin{aligned}
F_{i}(x) & =f(x) & & \text { for } x \in[a, b], \\
& =f(x)-m_{i}(x-a) & & \text { for } x \in]-\infty, a[, \\
& =f(x)+m_{i}(x-b) & & \text { for } x \in] b,+\infty[
\end{aligned}
$$

$i=1,2$.
Let now X be a normed linear space, Y a convex subset of X such that $0 \in Y$, and Z a nonvoid bounded subset of X.

Consider the space

$$
\operatorname{Lip}_{0}(X, Z)=\left\{\left.f\right|_{z}: f \in \operatorname{Lip}_{0} X\right\}
$$

normed by the uniform norm

$$
\left\|\left.f\right|_{\mathcal{Z}}\right\|_{u}=\sup \left\{|f|_{Z}(x) \mid: x \in \boldsymbol{Z}\right\}
$$

Consider the following problem:
(A) For $f \in K_{X}$, find two elements g_{*} and g^{*} in $P_{Y_{e}^{L}}(f)$ such that

$$
\left\|\left.f\right|_{Z}-\left.g_{*}\right|_{Z}\right\|_{u}=\inf \left\{\left\|\left.f\right|_{Z}-\left.g\right|_{Z}\right\|_{u}: g \in P_{Y_{c}^{\perp}}(f)\right\}
$$

and

$$
\left\|\left.f\right|_{z}-\left.g^{*}\right|_{z}\right\|_{u}=\sup \left\{\left\|\left.f\right|_{z}-\left.g\right|_{z}\right\|_{u}: g \in P_{Y_{c}}(f)\right\}
$$

Theorem 5. Problem (A) has a solution for all $f \in K_{X}$.
Proof. By Theorem 2(b) every g in $P_{Y_{c}^{\perp}}(f)$ has the form $g=f-F$ for a convex norm-preserving extension F of $\left.f\right|_{Y}$. By Theorem 3, there exist two convex norm-preserving extensions F_{1} and F_{2} of $\left.f\right|_{Y}$ such that

$$
F_{1}(x) \leqslant F(x) \leqslant F_{2}(x)
$$

for all $x \in X$, i.e.,

$$
f(x)-g_{1}(x) \leqslant f(x)-g(x) \leqslant f(x)-g_{2}(x),
$$

for all $x \in X$, where $g_{i}=f-F_{i}, i=1,2$. Therefore

$$
\begin{aligned}
& \min \left(\left\|\left.f\right|_{z}-\left.g_{1}\right|_{z}\right\|_{u},\left\|\left.f\right|_{z}-\left.g_{2}\right|_{z}\right\|_{u}\right) \leqslant\left\|\left.f\right|_{z}-\left.g\right|_{z}\right\|_{u} \\
& \quad \leqslant \max \left(\left\|\left.f\right|_{z}-\left.g_{1}\right|_{z}\right\|_{u},\left\|\left.f\right|_{z}-\left.g_{2}\right|_{z}\right\|_{u}\right) .
\end{aligned}
$$

It follows that a solution of Problem (A) is given by $g_{*}=g_{i}$ and $g^{*}=g_{j}$, where $i, j \in\{1,2\}$ are such that

$$
f\left|\left.\right|_{z}-g_{i}\right|_{z} \|_{u}=\min \left(\left\|\left.f\right|_{z}-\left.g_{1}\right|_{z}\right\|_{u},|f|_{z}-g_{2}!_{z} \|_{u}\right)
$$

and

$$
\left.f\right|_{z}-\left.g_{j}\right|_{z} \|_{u}=\max \left(\left\|\left.f\right|_{z}-\left.g_{1}\right|_{z}\right\|_{u},\left\|\left.f\right|_{Z}-\left.g_{2}\right|_{z}\right\|_{u}\right)
$$

References

1. S. Banach, "Wstep do teorii funkji rzeczwistych," Warszawa/Wroclav, 1951.
2. J. Czipser and L. Geher, Extension of function satisfying a Lipschitz condition, Acta Math. Acad. Sci. Hungar. 6 (1955), 213-220.
3. R. B. Holmes, "A Course on Optimisation and Best Approximation," Lecture Notes in Mathematics No. 257, Springer-Verlag, Berlin/Heidelberg/New York, 1972.
4. I. Kolumbán, Ob edinstvennosti prodolženija lineinyh funkcionalov, Mathematica (Cluj) 4 (1962), 267-270.
5. P. J. Laurent, "Approximation et optimisation," Hermann, Paris, 1972.
6. C. Mustăta, Asupra unor subspații cebîseviene din spaţiul normat al funcțiilor lipschitziene, Rev. Anal. Num. Teoria Aproximatiei 2 (1973), 81-87.
7. C. MUSTĂŢA, O proprietate de monotonie a operatorului de cea mai bună aproximație în spațiul funcțiilor lipschitziene, Rev. Anal. Num. Teoria Aproximatiei 3 (1974), 153-160.
8. C. Mustãta, Asupra unicităţii prelungirii p-seminormelor continue, Rev. Anal. Num. Teoria Aproximatici 2 (1973), 173-177.
9. С. Mustăта, Best approximation and unique extension of Lipschitz functions, J. Approximation Theory 19 (1977), 222-230.
10. C. Mustăta, A characterisation of Chebyshevian subspace of Y-type, Rec. Anal. Num. Theor. Approximation 6 (1977), 51-56.
11. R. R. Phelps, Uniqueness of Hahn-Banach extension and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.
