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Let (X, d) be a metric space. A function f: X — R is called Lipschitz if
there exists a number M 2> 0 such that

) — f(n)] < Md(x, y) (1

for all x, y € X. The smallest constant M verifying (1) is called the norm of f
and is denoted by || f1 ;.
We have

1 flx = sup{| f(x) — f(W/d(x, y): x,ye X, x # y}. (2)

Denote by Lip X the linear space of all Lipschitz functions on X. Actually,
il - I'xis not a norm on the space Lip X, since || fi; == 01if fis constant.

Now let Y be a nonvoid subset of X. A norm-preserving extension of a
function fe Lip Y to X is a function Fe Lip X such that F|, == f and
N flly = | Fliy. By a result of Banach [1] (see also Czipser and Geher {2])
every f€ Lip Y has a norm-preserving extension F in Lip X. Two of these
extensions are given by

Fi(x) =sup{f(y) — i flydx,y): ye Y] (3)
and
Folx) = inf{f(y) + 1 flydx,y): ye Y. (4)

Every norm-preserving extension F of fsatisfies
Fi(x) << F(x) < Fyx) (5)

for all x € X (see [7]).

Now, let X be a normed linear space and let Y be a nonvoid convex subset
of X. Concerning the convex norm-preserving extension to X of the convex
functions in Lip Y, we can prove the following theorem:

236

0021-9045/78/0243-0236%$02.00/0

Copyright © 1978 by Academic Press, Inc.
All rights of reproduction in any form reserved.



CONVEX LIPSCHITZ FUNCTIONS 237

THEOREM 1. If X is a normed linear space and Y a nonvoid convex subset
of X, then every convex function f in Lip Y has a convex norm preserving
extension F in Lip X.

Proof. We show that the maximal norm-preserving extension (4) of f is
also convex. Let F(x) = inf{f(y) -+ fllyllx —yl:ve ¥} x,x€ X, »,,
y,€ Y, and « € [0, 1]. Then

Flax; + (1 — o) x,)

L floyy + (1 — o) yp) + il flly faxy + (1 — a) xp — oy — (1 — o)
< of (y) = ) f(p) FUSr(all Xy =yl + 0 — D)l xz — »2 1)
= aolf(y) + 1 flly 1 x1 — 2D+ (0 — (f () + [ flly | x2 — 2 ).

Taking the infimum with respect to ¥, , v, € Y, we obtain
Floxy + (1 — o) xp) < aF(xy) + (1 — o) Fxy),

which shows that the function F is convex.

In general, this extension is not unique. Indeed, let X = R, with the usual
absolute value norm, ¥ = [—1, 1], and f: Y — R be given by f(x) = —x
for xe[—1,0] and f(x) = 2x for xe]0,1}]. Then the maximal norm-

preserving extension (4) of f is given by F(x) == —2x for xe€] —o0, —1],
F(x) = —2xforx e[—1, 0f, and F(x) = 2x for x € [0, + oo[. But the function
G(x) = —x for x € ]— o0, O] and G(x) = 2x for x € [0, + oo is also a convex

norm-preserving extension of f, and so is every convex combination aF -+
(I — o) G, « €10, 1], of the functions F and G.

Let, as above, X be a normed linear space and Z a convex subset of X such
that 0 € Z. Denote by Lip, Z the space

Lip, Z ={feLip Z: f(0) = 0}. (6)

Then (2) is a norm on Lip, Z and Lip, Z is a Banach space with respect to
this norm.
We use also the following notations:

K, ={feLipy Z : fis convex on Z}, 7
—the convex cone of convex functions in Lip, Z;
X, = Ky — Ky, ®
—the linear space generated by the cone K ;
Zt={feX,: flz =0}, 9)

—the null space of the set Z in X,.
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If Eis a normed linear space, M a nonvoid subset of £ and x e E, we
denote by d(x, M) the distance from xto M, i.e.,

dix, M) ==inf{iix -y :yeM]
and by Py, the metric projection of X onto M, i.e.,
Pu(x) ={yeM:tx —yl =dx, M)

If Kis a subset of X, then the set M is called K-proximinal (K-Chebyshevian) if
P(x) %% @ (respectively card(Py(x)) == 1), for all x € K.

In the sequel X denotes a normed linear space and Y a convex subset of X'
such that 0 € Y. Tt follows that K, is a P-cone in the sense of [10], and as a
particular case of the results proved there, one obtains:

THEOREM 2. (a) If fe Ky then

[ flyly = d(f, Y.

(b) The space Y, “ is Ky-proximinal. For fe Ky, the function g is in
Py(f) if and only if g = f — F, where F is a convex norm-preserving extension

of fly .

(¢c) The space Y, = is Ky-Chebyshevian if and only if every fe Ky has a
unique convex norm-preserving extension to X.

Remark. Similar duality results appear in [4, 11] for linear functionals
and in [6-10] for Lipschitz functions.

Now, we want to show that an inequality similar to (5) holds also for the
convex norm-preserving extensions of a given convex Lipschitz function.
For fe Ky let us denote by Ey*(f) the set of all convex norm preserving
extensions of f. We denote the norm | - | by | - |'.

THEOREM 3. If f'€ Ky then there exist two functions F, , F, in Ey(f) such
that

Fi(x) << Fx) << Fy(x) (10)
for all x e X and F € E,(f).

For the proof we need the following lemma:

LEMMA 4. The set E,o(f) is downward directed (with respect to the
pointwise ordering).
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Proof of Lemma 4. We have to show that for G;, G, Ey°(f) there
exists G € Ey%(f) such that

G(x) < min(Gy(x), Go(x)), (1D

for all x e X.
If Eis a linear space and ¢ : E— R U {d-o0} is a function, then the strict
epigraph of ¢ is defined by

epi’ ¢ ={(x,a) e E X R: ¢(x) < a}.

The function ¢ is convex if and only if its strict epigraph is a convex subset
of E X R (see Laurent [5, Theorem 6.1.5, Remark 6.1.6]).
For G,, G, € Ey(f) put

I' =co(epi’ G, U epi’ G,), (12)

where co(A4) denotes the convex hull of the set A.
Define G: X — R U {4-o0} by

G(x)=inf{ac R: (x,a)e I}, xeX. (13)

We show that G € E,*(f) and that G verifies the inequality (11). The proof
is divided into several steps.

(i) The set I' is open. Since the functions G, and G, are continuous, the
sets epi’ G, and epi’ G, are open, and so is their convex hull I,

() If z,o)el and d=c¢ then (z,d)el. Let z=ax 4+ (1 — )y,
c=oa+ (1 —a)b, for «€[0,1], (x,a)ecepi’ G;, (y,b)cepi’ G, and let
€ > 0 be an arbitrary number. Then (x,a + €)cepi’ G, and (y,b+ ¢) €
epi’ Gy,sothat (z,c + €y =alx,a+¢€) -1 — )y, b+ el

(iii) epi' G =TI and G is a convex function. Let (x, a) eepi’ G, i.e.,
G(x) < a. By (13) there exists b € R such that (x, ) € I" and b < a. By (ii),
(x, a) e I', proving the inclusion epi’ G C I,

Conversely, let (x,a)e I'. By (i) I' is open, so that there exist a neigh-
borhood U of x and e > 0 such that U X la — €, a + €[ C I'. Therefore
{x} X la — ¢, a+ €[ C I'and, by (13), G(x) < a — € < a, which shows that
(x,a)cepi’ Gand I' Cepi’ G.

The convexity of G follows from the above quoted result in Laurent [S].

(iv) We have G(x) < min(Gy(x), Go(x)) for all xe X and G(z) =
G(z) = Gy(z) for all ze Y. Let x € X. Then for all a > G,(x) and b > Gy(x)
we have (x, @) e epi’ G; C I'and (y, b) e epi’ G, C I, so that, by (13), G(x) <
min(Gy(x), Gy(x)).

640(24/3-5
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Let z be in ¥ and ¢ in R such that (z,¢)e I'. Then (z, ¢) =- alx, ¢) -
(1 — a&)(y, b), for a number a < [0, 1], (x, a) e epi’ G, and (3, b) e epi’ G, .
But, by the convexity of G, and G,, G(2) = G(ax ~ (I — «) y) < aG,(x)
(1 — ) GLy) <aa+ (1 —a)b = ¢, for i =1, 2. Taking the infimum
with respect to all ce R such that (z,¢)e ' we obtain G(z) = G(z) -
Gy(z). Since the converse inequality holds for all x € X, it follows G(z) -
Gy(z) = Gy(z), forallze Y.

(v) —ow < G(x) <+ for all xe X. The relations (x, Gy{x) — )¢
epi’ G; CI" and (13) imply G(x) < Gy(x) + 1 < oo. Suppose there exists
x € X such that G(x) == — 0. Choose an element y € ¥ and put z = 2y — x.
Then, by (iv) and the convexity of G we get

G(y) = G(y) < 27(F(x) + F(2)) = — 0,

mmplying G,(y) = — co, which is impossible.

(vi) Equality of the norms: |G| =\ fly =G|l =] G,l. Since
Gly = Gy ly = f it follows | G| = || G, |;. Suppose [ G| > | G, ||. By the
definition (2) of the norm in Lip X, there exist x, y € X, x # y such that
| G(x) — G x — yll =1 Gy, say

|Gx) — GMIlx =yl =[G+ e

for an € > 0. Without loss of generality we can suppose

G(y) — Gx) _ c

Let xp = {x + #(y — x) : t == 0} be the half-line determined by x and .
Define ¢ : 10, of = R by ¢(t) = tHG(x + t(y — X)) — G(x)). By Holmes
[3, p. 17], the function ¢ is nondecreasing, so that

Gx + 1y — x) — Gx) 1 . 1 .
Tty = BT A ACE pramy LD
=GN =G gy e
ly — x|
- Gix + t(y — x)) — Gy(x) + e
- ey — ) ’

forallt > 1.
Therefore

Gilx +1(y — x) < G(x + t(y — x) — (G(x) — Gu(x) + te| ¥y — x|,

for all ¢ 2= 1. But for ¢ sufficiently large, G(x) — G,(x) + telly — x| > 0, so
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that Gy(x + #(y — x)) < G(x + t(y — x)), contradicting the inequality
G < Gy ().
Lemma 4 is completely proved.

Proof of Theorem 3. Let F, be the maximal norm-preserving extension (4)
of f. By the proof of Theorem 1, F, is convex and since Fy(x) = F(x) for
every norm-preserving extension F of f, this is a fortiori true for the convex
norm-preserving extensions of f.

Put

Fi(x) = inf{F(x) : F € Ey*(f)}. (15)

To end the proof we have to show that F; is a convex norm-preserving
extension of f.

(i) F, is a convex function. Let x,ye X, a €0, 1], € > 0 and let G,,
G, € Ey¢(f) be such that G,(x) << Fi(x) + e and G,(y) < Fy(y) + e. Since, by
Lemma 4, the set E,¢(f) is downward directed, there exists G € Ey¢(f) such
that G; < G, and G; < G, . Then

Filax + (1 — o) y)
< Galox + (1 — ) y) < alGg(x) + (1 — o) Gy(y)
< aGy(x) + (1 — o) Go(y) < aFy(x) -+ (1 — ) Fy(y) + e

Since € > 0 is arbitrary, it follows that

Fy(ex + (1 — @) y) < aFy(x) + (1 — o) Fy(y),

i.e., the function F, is convex.

(i) F,|y =f This is obvious since F(y) = f(p) for all ye Y and
Fe Ey(f).

(iii) Equality of the norms: | Fy|| = ||flly . Obviously, | Fi || = | fly .
Let us suppose | Fy ! > || flly . Then there exists § > 0 such that || F; ! =
i flly -+ 8. By the definition of the norm in Lip X, there exist x, ye X, x £ y
such that

(F(y) — FQ))/lly — x| Z I flly + & (16)

where 0 << e < 8. By definition (15) of F,, for 0 < n << el x — y]||, there
exist G, , G, € Ey*(f) such that Gy(x) < Fy(x) + 5 and Gy(y) < Fi(y) + 7.
The set Ev¢(f) being downward directed (Lemma 4), there exists G, € Ev(f)
such that G; << G, and G; << G, . Consequently

Fi(x) < Gy(x) < F(x) + 1
and
F(y) <Gi(y) <F(y -+
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or, equivalently,

0 = Gy(x) — Fy(x) <y,
and
0 < Gy(y) — Fy(y) <.

From these inequalities one obtains

Gy(x) — Fi(x) — (Ga(y) — Fi()) < Ga(x) — Fi(x) <,

so that
G3(y) — Gy(x) > Fi(y) — Fy(x) — . a7
Taking into account (16) and (17)
Go(y) — Gs(®) _ B —F(x) 7
ly—=xi =y —xl Iy — xil

= Ufly + e = T =i fly.

X

But then || G, || > || f|ly , in contradiction to G5 € Ex°(f).
Theorem 3 is proved.

Remark. Let X =Rand Y = [a,b],0c Y. For fe Ky, let

my = min(| f'(a + O)f , | /(& — 0)})
and
my, = max(| f'(a + 0)f, | f'(b — 0))).

Then the minimal and maximal convex norm-preserving extensions £, and
F, , respectively, of f, are given by

Fy(x) = f(x) for x € [a, b],
=f(x) — m(x — a) for x € ]— o0, 4],
= f(x) 4+ m(x — b) for x € )b, +o];
i=1,2
Let now X be a normed linear space, ¥ a convex subset of X such that

0 e Y, and Z a nonvoid bounded subset of X.
Consider the space

Lipo(X, Z) = {f1z: f€ Lipy X},
normed by the uniform norm

11z e = sup{l flz (x)| : x e Z}.
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Consider the following problem:

(A) For f€ Ky, find two elements g, and g* in Py (f) such that

1 flz—gxlzlh =f{f|z — glzll.: g€ Py:(f)}
and

1 flz — g% Izllu = sup{ll f1z — g lzllu 1 & € PyA(/)}.

THEOREM 5. Problem (A) has a solution for all f€ Ky .

Proof. By Theorem 2(b) every g in Py:(f) has the form g == f — F for a
convex norm-preserving extension F of f|, . By Theorem 3, there exist two
convex norm-preserving extensions F; and F, of f|y such that

Fi(x) < F(x) < Fo(x),

for all xe X, i.e.,

FO0) — gi(x) < f(x) — g(x) <f(x) — ga(x),

forall xe X, where g, = f — F;, i = 1, 2. Therefore

min([f1z — &1zl 1 flz — & |z <If1z — gz
<max(lflz — & lzllus 1 flz — & |z llw)-

It follows that a solution of Problem (A) is given by g, = g; and g* = g;,
where i, j € {1, 2} are such that

Slz— gzl =min(l fiz — gzl 11z — &z 1)
and
iflz — &ilzllu = max(1 flz — g1 lzllus 1 f1z — g2 1z [l
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