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Let (X, d) be a metric space. A function f: X -->- R is called Lipschitz if
there exists a number M ~:c: 0 such that

f(x) _. f(y)1 ~:;; Md(x, y) (1)

for all x, y E X. The smallest constant M verifying (I) is called the norm off
and is denoted by 'ifi x .

We have

iflx"c sup{1 j(x) - j(y)l/d(x, y) : x, y E X, x =F y}. (2)

Denote by Lip X the linear space of all Lipschitz functions on X. Actually,
II . Ix is not a norm on the space Lip X, since fiix ~= 0 iffis constant.

Now let Y be a nonvoid subset of X. A norm-preserving extension of a
function f E Lip Y to X is a function FE Lip X such that Fly =c f and
Ilfl!l' = Fllx · By a result of Banach [I] (see also Czipser and Geher [2])
every fE Lip Y has a norm-preserving extension F in Lip X. Two of these
extensions are given by

and
F2(x) = inf{f(y) -+- fl y d(x, y) : y E Y].

Every norm-preserving extension F off satisfies

(3)

(4)

(5)

for all x E X (see [7]).
Now, let X be a normed linear space and let Y be a nonvoid convex subset

of X. Concerning the convex norm-preserving extension to X of the convex
functions in Lip Y, we can prove the following theorem:
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CONVEX LIPSCHITZ FUNCTIONS 237

THEOREM I. If X is a normed linear space and Y a nonvoid convex subset
of X, then every convex function f in Lip Y has a convex norm preserving
extension F in Lip X.

Proof We show that the maximal norm-preserving extension (4) off is
also convex. Let F(x) = inf{f(y) -+- Ilflly II x - Y II : Y E Y}, Xl , x 2E X, YI ,
Y2 E Y, and ex E [0, I]. Then

F(exxi +- (I - ex) x 2)

<j(exYI -+- (I - ex) Y2) -+- :lIliy II exxi -+- (I - ex) X 2 - exYI - (I - ex) Y211

< exj(YI) -+- (I - ex)f(Y2) -+- !I flly(ex II Xl - YIII -+- (I - ex)l! X 2 - Y211)

= ex(f(YI) -+- II flly 11 Xl - )'1 11) -+- (I - iX)(f(Y2) -+- Ilflly II X 2 - Y211).

Taking the infimum with respect to YI , Y2 E Y, we obtain

which shows that the function F is convex.
In general, this extension is not unique. Indeed, let X = R, with the usual

absolute value norm, Y = [-I, I], and f: Y ~ R be given by j(x) = -x
for X E [-1,0] and j(x) = 2x for x E ]0, I]. Then the maximal norm
preserving extension (4) of f is given by F(x) == - 2x for x E ] - 00, -I [,
F(x) = -2x for x E [-1,0[, andF(x) = 2x for x E [0, -+- 00[. But the function
G(x) = -x for x E]- 00, O[ and G(x) = 2x for x E [0, -+-oo[ is also a convex
norm-preserving extension of f and so is every convex combination exF-+
(I - ex) G, ex E [0, 1], of the functions F and G.

Let, as above, X be a normed linear space and Z a convex subset of X such
that 0 E Z. Denote by Lipo Z the space

Lipo Z = {fE Lip Z: j(O) = OJ. (6)

Then (2) is a norm on Lipo Z and Lipo Z is a Banach space with respect to
this norm.

We use also the following notations:

Kz = {fE Lipo Z :fis convex on Z},

-the convex cone of convex functions in Lipo Z;

-the linear space generated by the cone Kx ;

Zcl- = {fE XC :flz = O},

-the null space of the set Z in Xc .

(7)

(8)

(9)
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If E is a normed linear space, M a nonvoid subset of E and x E' E, we
denote by d(x, M) the distance from x to M, i.e.,

d(x,M) inf{!!x y:yEM;

and by PM the metric projection of X onto M, i.e.,

PM(x) = {y E' M : I x .~ y I .~•• d(x, M)}.

If K is a subset of X, then the set M is called K-proximinal (K-Chebyshevian) if
PM(x) ¥= 0 (respectively card(PM(x) = I), for all x E K.

In the sequel X denotes a normed linear space and Ya convex subset of X
such that 0 E Y. It follows that K y is a P-cone in the sense of [10], and as a
particular case of the results proved there, one obtains:

THEOREM 2. (a) IffE K x then

If I y I y = d(/, Y/-).

(b) The space Y/- is Kx-proximinal. For fE K x , the function g is in
PyJ.(f) ifand only ifg = f -- F, where F is a convex norm-preserving extension
offly. .

(c) The space Y/ is KrChebyshevian if and only if etery f E K y has a
unique convex norm-preserving extension to X.

Remark. Similar duality results appear in [4, II] for linear functionals
and in [6-10] for Lipschitz functions.

Now, we want to show that an inequality similar to (5) holds also for the
convex norm-preserving extensions of a given convex Lipschitz function.
For fE K y let us denote by Eyc(f) the set of all convex norm preserving
extensions off We denote the norm . j x by!!' .

THEOREM 3. Iff E Ky then there exist two functions F] , F2 in E}oc(f) such
that

( 10)

for all x E' X and FE Eyc(f).

For the proof we need the following lemma:

LEMMA 4. The set Ey"(f) is downward directed (with respect to the
pointwise ordering).
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Proof of Lemma 4. We have to show that for G1 , G2 EO Eyc(f) there
exists G EO Eyc(f) such that

(11)

for all x EO X.
If E is a linear space and rp : E ---- R u {±oo} is a function, then the strict

epigraph of rp is defined by

epi' rp = {(x, a) EO E X R : rp(x) < a}.

The function rp is convex if and only if its strict epigraph is a convex subset
of E X R (see Laurent [5, Theorem 6.1.5, Remark 6.1.6]).

For G1, G2 EO Eyc(f) put

r =co(epi' G1U epi' G2),

where coCA) denotes the convex hull of the set A.
Define G: X ---- R u {±ro} by

G(x) = inf{a E R : (x, a) EO r}, XE X.

(12)

(13)

We show that G E Eyc(f) and that G verifies the inequality (1l). The proof
is divided into several steps.

(i) The set r is open. Since the functions G1 and G2 are continuous, the
sets epi' G1and epi' G2 are open, and so is their convex hull r.

(ii) If (z, c) E rand d ~ c then (z, d) E r. Let z = exx + (1 - ex) y,
c = exa + (l - ex) b, for ex E [0, 1], (x, a) E epi' G1 , (y, b) E epi' G2 and let
E > °be an arbitrary number. Then (x, a + E) E epi' G1 and (y, b + E) E

epi' G2, so that (z, c + E) = ex(x, a + E) + (1 - ex)(y, b + E) E r.
(iii) epi' G = rand G is a convex function. Let (x, a) EO epi' G, i.e.,

G(x) < a. By (13) there exists b EO R such that (x, b) E rand b < a. By (ii),
(x, a) E r, proving the inclusion epi' Ger.

Conversely, let (x, a) E r. By (i) r is open, so that there exist a neigh
borhood U of x and E > °such that U X ]a -- E, a + E[ C r. Therefore
{x} X ]a - E, a + E[ C r and, by (13), G(x) ~ a -- E < a, which shows that
(x, a) E epi' G and r C epi' G.

The convexity of G follows from the above quoted result in Laurent [5].

(iv) We have G(x) ~ min(G1(x), G2(x)) for all x E X and G(z) =

G1(z) = G2(z)for all z E Y. Let x E X. Then for all a > G1(x) and b > G2(x)
we have (x, a) EO epi' G1 C rand (y, b) E epi' G2 C r, so that, by (13), G(x) ~
min(G1(x), G2(x)).
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Let z be in Y and c in R such that (z, c) E r. Then (z, c) .~ .. (letx, o)
(1_. LX)(Y, b), for a number lX E [0, I], (x, a) E epi ' G1 , and (y, b) E epi ' G2 •

But, by the convexity of G1 and G2 , G;(z) = Gi(LXX -+- (I - (x) y) ~ lXG,(X)
+ (1 ~ lX) Gi(y) <: LXa -+- (1- lX) b == c, for i =c I, 2. Taking the infimum
with respect to all c E R such that (z, c) E r we obtain G(z) ? G1(z)
G2(z). Since the converse inequality holds for all x E X, it follows G(z)
GtCz) = G2(z), for all z E Y.

(v) - 00 <: G(x) <: + 00 for all x E X. The relations (x, Gl(x) - I) E
epi ' G1 C rand (13) imply G(x) ~ Gl(x) + 1 <: 00. Suppose there exists
x E X such that G(x) == - 00. Choose an element y E Y and put z = 2y - x.
Then, by (iv) and the convexity of G we get

Gl(y) = G(y) ~ 2-1(F(x) + F(z» = - 00,

implying G1(y) = -·00, which is impossible.

(vi) Equality of the norms: 11 Gil = lilly = GIll = I. G2 • Since
Gly = G1 Iy = f, it follows II Gil? II G1 1i . Suppose II Gil> ;1 GIll. By the
definition (2) of the norm in Lip X, there exist x, y E X, x =1= y such that
I G(x) - G(y)l/ll x - y II > I' G1 II , say

1 G(x) -- G(y)I/11 x - y 11 =.! GIll + E,

for an E > 0. Without loss of generality we can suppose

G(y) - G(x) = II G Ii +
II x - y Ii . 1" E.

(14)

Let ;;, = {x + t(y - x) : t ? O} be the half-line determined by x and y.
Define <p : ]0, 00 [ ---+ R by <pet) = t-1(G(x + t(y - x» - G(x»). By Holmes
[3, p. 17], the function <P is nondecreasing, so that

G(x + t(y - x)) - G(x)

II t(y - x)\1

for all t ? 1.
Therefore

I 1
'I I' . <p(t) ? II II . !pel),y-Xi y-x,

= G(y) - G(x) = II G II + E

Ily - xl! 1

-., G1(x + f(y - x» - G1(x) +
~ II f(y - x)l\ E,

G1(x + t(y - x» ~ G(x + f(Y - x» - (G(x) - G1(x) + tE Ii y - x ID,

for all t ? 1. But for t sufficiently large, G(x) - G1(x) + tE II y - x:1 > 0, so
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that Gl(x + l(Y ~- x)) < G(x + l(y - x)), contradicting the inequality
G :(; Gl (iv).

Lemma 4 is completely proved.

Proof of Theorem 3. Let F2 be the maximal norm-preserving extension (4)
of f By the proof of Theorem 1, F2 is convex and since F2(x) :? F(x) for
every norm-preserving extension F off, this is a fortiori true for the convex
norm-preserving extensions off

Put

Fl(x) = inf{F(x) : FE Eyc(f)}. (15)

To end the proof we have to show that F l is a convex norm-preserving
extension off

(i) Fl is a convex function. Let x, Y E X, a E [0, 1], E > °and let Gl ,
G2 E Eyc(f) be such that Gl(x) < Fl(x) + E and G2(y) < Fl(y) + E. Since, by
Lemma 4, the set Eyc(f) is downward directed, there exists Ga E Eyc(f) such
that Ga :(; Gl and Ga :(; G2 • Then

Fl(ax + (1 - a) y)

:(; Ga(ax + (1 - a) y) :(; aGa(x) + (1 - a) Ga(y)

:(; 1XGl (X) + (1 - a) G2(y) < aFl(x) + (1 - a) Fl Y) + E.

Since E > 0 is arbitrary, it follows that

i.e., the function Fl is convex.

(ii) Fl [y = f This is obvious since F(y) = fey) for all y E Y and
FE Eyc(f).

(iii) Equality of the norms: II FIll = Ilflly. Obviously, FIll:? Ilfl'y .
Let us suppose I FIll> Ilflly . Then there exists 0 > 0 such that Ii Flli =
Ii flly + o. By the definition of the norm in Lip X, there exist x, y E X, x =1= Y
such that

(16)

where 0 < E < 8. By definition (15) of F l , for °< 'YJ < E II x - y II, there
exist Gl , G2 E Eyc(f) such that Gl(x) < Fl(x) + 'YJ and G2(y) < Fl(y) + 'YJ.

The set Eyc(f) being downward directed (Lemma 4), there exists Ga E Eyc(f)
such that Ga :(; Gl and Ga :(; G2 • Consequently

and
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or, equivalently,

and
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From these inequalities one obtains

so that

Taking into account (16) and (17)

(17)

Ily - xii

> II/[IY + E - _1)_ > li/[ly.
y-x

But then Ii G3 [I > li/[IY, in contradiction to G3 E Eyc(f).
Theorem 3 is proved.

Remark. Let X = Rand Y = [a, b], 0 E Y. For IE K y , let

and
m1 = min(j r(a + 0)[ , 1 r(b - 0)1)

m2 = max([ r(a + 0)1 , Ir(b ~ 0)1)·

Then the minimal and maximal convex norm-preserving extensions F1 and
F2 , respectively, off, are given by

Fi(x) = f(x)

= f(x) - mi(X - a)

= f(x) + mi(X - b)

for x E [a, b],

for x E ]- 00, a[,

for x E ]b, +00[;

i = 1,2.
Let now X be a normed linear space, Y a convex subset of X such that

oE Y, and Z a nonvoid bounded subset of X.
Consider the space

Lipo(X, Z) = Ulz :/E Lipo X},

normed by the uniform norm

[1/[z II" = sup{l/lz (x) I : x E Z}.
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Consider the following problem:

(A) For I E Kx ,find two elements g* and g* in Py-~(f) such that
c

li/lz -- g* Izll" = inf{ll/lz - g Izll,,: g E Py;(f)}

and

IIIlz - g* Iz!l" = sup{llflz - g Izl1,,: g E Py;(f)}.
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THEOREM 5. Problem (A) has a solutionlor allIE Kx .

Proof By Theorem 2(b) every g in Py.L(f) has the form g = I - F for a
convex norm-preserving extension F of IIy. By Theorem 3, there exist two
convex norm-preserving extensions F1 and F2 of I Iy such that

for all x E X, i.e.,

f(x) - gl(X) ~f(x) - g(x) ~f(x) - g2(X),

for all x E X, where gi = I - Fi , i = 1, 2. Therefore

min(ll/lz - gl Iz II", 1I/Iz - g2 Iz II,,) .s;; 1I/Iz - g Iz il"
~ max(ilflz - gl Iz II" , 1!/lz - g2 Iz II,,)·

It follows that a solution of Problem (A) is given by g* = gi and g* = gj ,
where i, j E {I, 2} are such that

J/lz - gi Iz II" = min(ll/iz - gl Iz II" ,lflz - g2 !zl,J

and

I!lz - gj Iz II" = max(l!/!z - gl Iz II", 1I/Iz - g2 Iz II,,).
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